In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. They generalize to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.
Contents |
To define the algebraic concept of valuation, the following objects are needed:
The ordering and group law on Γ are extended to the set Γ∪{∞}[1] by the rules
Then a valuation of K is any map
which satisfies the following properties for all a, b in K:
Some authors use the term exponential valuation rather than "valuation". In this case the term "valuation" means "absolute value".
A valuation v is called trivial (or the trivial valuation of K) if v(a) = 0 for all a in K×, otherwise it is called non-trivial.
For valuations used in geometric applications, the first property implies that any non-empty germ of an analytic variety near a point contains that point. The second property asserts that any valuation is a group homomorphism, while the third property is a translation of the triangle inequality from metric spaces to ordered groups.
It is possible to give a dual definition of the same concept using the multiplicative notation for Γ: if, instead of ∞, an element O[2] is given and the ordering and group law on Γ are extended by the rules
then a valuation of K is any map
satisfying the following properties for all a, b in K:
(Note that in this definition, the directions of the inequalities are reversed.)
A valuation is commonly assumed to be surjective, since many arguments used in ordinary mathematical research involving those objects use preimages of unspecified elements of the ordered group contained in its codomain. Also, the first definition of valuation given is more frequently encountered in ordinary mathematical research, thus it is the only one used in the following considerations and examples.
If v : K → Γ∪{∞} is a valuation, then there are several objects that can be defined from it:
Two valuations v1 and v2 of K with valuation group Γ1 and Γ2, respectively, are said to be equivalent if they have there is an order-preserving group isomorphism φ : Γ1 → Γ2 such that v2(a) = φ(v1(a)) for all a in K×. This is an equivalence relation.
Two valuations of K are equivalent if, and only if, they have the same valuation ring.
An equivalence class of valuations of a field is called a place. Ostrowski's theorem gives a complete classification of places of the field of rational numbers Q: these are precisely the equivalence classes of valuations for the p-adic completions of Q.
Let v be a valuation of K and let L be a field extension of K. An extension of v (to L) is a valuation w of L such that the restriction of w to K is v. The set of all such extensions is studied in the ramification theory of valuations.
Let L/K be a finite extension and let w be an extension of v to L. The index of Γv in Γw, e(w/v) = [Γw : Γv], is called the reduced ramification index of w over v. It satisfies e(w/v) ≤ [L : K] (the degree of the extension L/K). The relative degree of w over v is defined to be f(w/v) = [Rw/mw : Rv/mv] (the degree of the extension of residue fields). It is also less than or equal to the degree of L/K. When L/K is separable, the ramification index of w over v is defined to be e(w/v)pi, where pi is the inseparable degree of the extension Rw/mw over Rv/mv.
When the ordered abelian group Γ is the additive group of the integers, the associated absolute value induces a metric on the field K. If K is complete with respect to this metric, then it is called complete valued field.
Let R be a principal ideal domain, K be its field of fractions, and π be an irreducible element of R. Since every principal ideal domain is a unique factorization domain, every non-zero element a of R can be written (essentially) uniquely as
where the e's are non-negative integers and the pi are irreducible elements of R that are not associates of π. In particular, the integer ea is uniquely determined by a.
The π-adic valuation of K is then given by
If π' is another irreducible element of R such that (π') = (π) (that is, they generate the same ideal in R), then the π-adic valuation and the π'-adic valuation are equal. Thus, the π-adic valuation can be called the P-adic valuation, where P = (π).
When R is the ring of integers Z, then K is the rational numbers Q, and π is some prime number p (or its negative). The π-adic valuation obtained is the p-adic valuation on Q.
The previous example can be generalized to Dedekind domains. Let R be a Dedekind domain, K its field of fractions, and let P be a non-zero prime ideal of R. Then, the localization of R at P, denoted RP, is a principal ideal domain whose field of fractions is K. The construction of the previous section applied to the prime ideal PRP of RP yields the P-adic valuation of K.
Let be the ring of polynomials of two variables over the complex field, be the field of rational functions over the same field, and consider the (convergent) power series
whose zero set, the analytic variety , can be parametrized by one coordinate as follows
It is possible to define a map as the value of the order of the formal power series in the variable obtained by restriction of any polynomial in to the points of the set
It is also possible to extend the map from its original ring of definition to the whole field as follows
As the power series is not a polynomial, it is easy to prove that the extended map is a valuation: the value is called intersection number between the curves (1-dimensional analytic varieties) and . As an example, the computation of some intersection numbers follows